Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 2, 2026
-
Abstract Alkali-rich aluminous high-pressure phases including calcium-ferrite (CF) type NaAlSiO4 are thought to constitute ~20% by volume of subducted mid-ocean ridge basalt (MORB) under lower mantle conditions. As a potentially significant host for incompatible elements in the deep mantle, knowledge of the crystal structure and physical properties of CF-type phases is therefore important to understanding the crystal chemistry of alkali storage and recycling in the Earth’s mantle. We determined the evolution of the crystal structure of pure CF-NaAlSiO4 and Fe-bearing CF-NaAlSiO4 at pressures up to ~45 GPa using synchrotron-based, single-crystal X-ray diffraction. Using the high-pressure lattice parameters, we also determined a third-order Birch-Murnaghan equation of state, with V0 = 241.6(1) Å3, KT0 = 220(4) GPa, and KT0′ = 2.6(3) for Fe-free CF, and V0 = 244.2(2) Å3, KT0 = 211(6) GPa, and KT0′ = 2.6(3) for Fe-bearing CF. The addition of Fe into CF-NaAlSiO4 resulted in a 10 ± 5% decrease in the stiffest direction of linear compressibility along the c-axis, leading to stronger elastic anisotropy compared with the Fe-free CF phase. The NaO8 polyhedra volume is 2.6 times larger and about 60% more compressible than the octahedral (Al,Si)O6 sites, with K0NaO8 = 127 GPa and K0(Al,Si)O6 ~304 GPa. Raman spectra of the pure CF-type NaAlSiO4 sample shows that the pressure coefficient of the mean vibrational mode, 1.60(7) cm–1/GPa, is slightly higher than 1.36(6) cm−1/GPa obtained for the Fe-bearing CF-NaAlSiO4 sample. The ability of CF-type phases to contain incompatible elements such as Na beyond the stability field of jadeite requires larger and less-compressible NaO8 polyhedra. Detailed high-pressure crystallographic information for the CF phases provides knowledge on how large alkali metals are hosted in alumina framework structures with stability well into the lowermost mantle.more » « less
-
The development of multifunctional nanomaterials has received growing research interest, thanks to its ability to combine multiple properties for severing highly demanding purposes. In this work, holmium oxide nanoparticles are synthesized and characterized by various tools including XRD, XPS, and TEM. These nanoparticles are found to emit near-infrared fluorescence (800–1100 nm) under a 785 nm excitation source. Imaging of the animal tissues was demonstrated, and the maximum imaging depth was found to be 2.2 cm. The synthesized nanoparticles also show the capability of facilitating dye (fluorescein sodium salt and rhodamine 6G) degradation under white light irradiation. The synthesized holmium oxide nanoparticles are envisioned to be useful for near-infrared tissue imaging and dye-degradation.more » « less
-
Abstract. During the COVID-19 lockdown, the dramatic reduction of anthropogenicemissions provided a unique opportunity to investigate the effects ofreduced anthropogenic activity and primary emissions on atmospheric chemicalprocesses and the consequent formation of secondary pollutants. Here, weutilize comprehensive observations to examine the response of atmosphericnew particle formation (NPF) to the changes in the atmospheric chemicalcocktail. We find that the main clustering process was unaffected by thedrastically reduced traffic emissions, and the formation rate of 1.5 nmparticles remained unaltered. However, particle survival probability wasenhanced due to an increased particle growth rate (GR) during the lockdownperiod, explaining the enhanced NPF activity in earlier studies. For GR at1.5–3 nm, sulfuric acid (SA) was the main contributor at high temperatures,whilst there were unaccounted contributing vapors at low temperatures. ForGR at 3–7 and 7–15 nm, oxygenated organic molecules (OOMs) played amajor role. Surprisingly, OOM composition and volatility were insensitive tothe large change of atmospheric NOx concentration; instead theassociated high particle growth rates and high OOM concentration during thelockdown period were mostly caused by the enhanced atmospheric oxidativecapacity. Overall, our findings suggest a limited role of traffic emissionsin NPF.more » « less
An official website of the United States government
